Setup Intel OpenVINO and AWS Greengrass on Ubuntu

Setup Intel OpenVINO and AWS Greengrass on Ubuntu 
  1. First set the conversion tool ModelOptimizer: https://software.intel.com/en-us/articles/OpenVINO-ModelOptimizer
  2. Command : `source /bin/setupvars.sh`
  3. Command : `cd /deployment_tools/model_optimizer/install_prerequisites`
  4. Command : `sudo -E ./install_prerequisites.sh`
  5. Model Optimizer uses Python 3.5, whereas Greengrass samples use Python 2.7. In order for Model Optimizer not to influence the global Python configuration, activate a virtual environment as below:
  6. Command : `sudo ./install_prerequisites.sh venv`
  7. Command : `cd /deployment_tools/model_optimizer`
  8. Command : `source venv/bin/activate`
  9. For CPU, models should be converted with data type FP32 and for GPU/FPGA, it should be with data type FP16 for the best performance.
  10. For classification using BVLC Alexnet model:
    Command : `python mo.py --framework caffe --input_model /bvlc_alexnet.caffemodel --input_proto /deploy.prototxt --data_type --output_dir --input_shape [1,3,227,227]`
  11. For object detection using SqueezeNetSSD-5Class model:
    Command : `python mo.py --framework caffe --input_model /SqueezeNetSSD-5Class.caffemodel --input_proto /SqueezeNetSSD-5Class.prototxt --data_type --output_dir `
  12. where is the location where the user downloaded the models, is FP32 or FP16 depending on target device, and is the directory where the user wants to store the IR. IR contains .xml format corresponding to the network structure and .bin format corresponding to weights. This .xml should be passed to mentioned in the Configuring the Lambda Function section. In the BVLC Alexnet model, the prototxt defines the input shape with batch size 10 by default. In order to use any other batch size, the entire input shape needs to be provided as an argument to the model optimizer. For example, if you want to use batch size 1, you can provide --input_shape [1,3,227,227].
Greengrass sample is in : 
/opt/intel/computer_vision_sdk/inference_engine/samples/python_samples/greengrass_samples/

However, there are some changes in the openvino_toolkit_p_2018.3.343 version of the path that need to be modified (python2):

LD_LIBRARY_PATH : 
/opt/intel/computer_vision_sdk/opencv/share/OpenCV/3rdparty/lib:/opt/intel/computer_vision_sdk/opencv/lib:/opt/intel/opencl:/opt/intel/computer_vision_sdk/deployment_tools/inference_engine/external/cldnn/lib:/opt/intel/computer_vision_sdk/deployment_tools/inference_engine/external/mkltiny_lnx/lib:/opt/intel/computer_vision_sdk/deployment_tools/inference_engine/lib/ubuntu_16.04/intel64:/opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/model_optimizer_caffe/bin:/opt/intel/computer_vision_sdk/openvx/lib

PYTHONPATH : 

/opt/intel/computer_vision_sdk/python/python2.7/ubuntu16/

PARAM_CPU_EXTENSION_PATH : 

/opt/intel/computer_vision_sdk/deployment_tools/inference_engine/lib/ubuntu_16.04/intel64/libcpu_extension_avx2.so

留言

搜尋

本月熱門文章

水電行介紹---台北市松山區八德路三段12巷51弄5號的昱弘水電冷氣行‎—甚麼都有,水電、廚具、衛浴、冷氣都有服務的水電行

水電行介紹---台北市南港區研究院路二段30號的志興水電行---是水電行也是水電材料行

日本旅行 去東京可以在哪邊買羽球相關用品?WEMBLEY/WINDSOR/梭家/Victoria/Alpen TOKYO/

[專案管理] 敏捷提到的"資訊散熱器"(Information Radiator)是甚麼?

冷氣水電行介紹---台北市中山區新生北路二段149巷1號的富佑水電冷氣行—你附近的水電、冷氣好鄰居

廚具水電行—呼叫臺北市內湖區民權東路6段56巷1弄2號的永輝水電衛浴廚具行 –有廚浴, 衛浴展示空間喔!

水電行介紹---台北市北投區中和街上的成功水電行--我也要成功!

水電行介紹---台北市萬華區東園街47號的正泰水電裝潢行---水電廚具衛浴找我就對啦!

Agoda

熱門文章

[社會觀察] 一生順遂與命途乖舛

中華民國2024 總統、副總統選舉公告發布 連署參選門檻28萬9667人 可以推薦候選人的政黨包括民進黨、國民黨、民眾黨和時力

[FAANG面試] 如何準備Google Technical Program Manager (TPM) 面試

[HMD Global] Nokia 2020 新手機發布 首款 5G 手機 Nokia 8.3 預計夏季開賣 !

關於中國:202X年

[音樂] 霖霖 新單曲:給你了

中信兄弟PS女孩 浮誇甜心 凱蒂 炸裂全場~ 小許瑋甯

[棒球] 2023 台灣大賽G5 威能帝13K飆破紀錄 猿3轟搶聽牌優勢